Marine Science: Difference between revisions

From GRASS-Wiki
Jump to navigation Jump to search
(→‎Bathymetric data: etopo2 link)
Line 13: Line 13:
==== Bathymetric data ====
==== Bathymetric data ====


* See the ETOPO2 article by M.H. Bowman in the [http://grass.itc.it/newsletter/GRASSNews_vol1.pdf GRASS Newsletter, 1:8-11, August 2004].
* See the ETOPO2 (2' global) article by M.H. Bowman in the [http://grass.itc.it/newsletter/GRASSNews_vol1.pdf GRASS Newsletter, 1:8-11, August 2004].
 
: [http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html ETOPO2v2 data download]
* Some datasource links: http://www.ruf.rice.edu/~ben/gmt.html
* Some datasource links: http://www.ruf.rice.edu/~ben/gmt.html



Revision as of 07:52, 25 May 2008

this page is a work in progress

Tools for marine scientists

Bathymetry processing

Please expand

  • Basic DEM creation: v.in.ascii + v.surf.rst
  • r.in.xyz for processing multibeam sonar swaths
  • r.surf.nnbathy add-on script for creating bathymetic DEMs from input x,y,z data


Bathymetric data

ETOPO2v2 data download
  • Smith and Sandwell 1-minute global elevation v9.1b, August 21, 2007
http://topex.ucsd.edu/marine_topo/mar_topo.html (712mb)

global_topo_1min/README_V9.1.txt file:

Version 9.1 has a very different FORMAT than V8.2
The main differences are that the grid spacing in 
longitude is now 1 minute rather than 2 minutes.
In addition, the latitude range is increased to 
+/- 80.738.  Like the old versions, the elevation(+)
and depth(-) are stored as 2-byte integers to the nearest meter.
An odd depth of say -2001m signifies that this pixel was constrained
by a real depth sounding while an even depth of say -2000m is
a predicted depth.

Here are the parameters for the old and new versions:
param    V8.2     V9.2
___________________________
nlon     10800    21600
nlat     12672    17280
rlt0   -72.006  -80.738
rltf    72.006   80.738
___________________________

The binary format of the integers is bigendian so the bytes need to be 
swapped if you are running on an Intel processor.
Here is a typical command for swapping bytes:
dd if=topo_9.1.img of=topo_9.1.img.swab bs=21600 conv=swab.
  • img2grd + grd2xyz shows FP elevation values to the nearest cm not meter. Are these from contributed datasets? How does that fit with the odd/even real/interpolated soundings?


Import using GMT

Process with GMT's img2grd to convert from spherical Mercator projection to geographic coordinates, then import into GRASS

http://osdir.com/ml/gis.gmt.user/2005-04/msg00087.html
 img2grd topo_9.1b.img -T1 -S1 -V -R0/360/-80.738/80.738 -m1 -D -Gtopo_all.grd
 # (out of memory, needs 1.4gb)
 # try just for NZ   (W/E/S/N bounds)
 REGION=160/180/-50/-30
 img2grd topo_9.1b.img -T1 -S1 -V -R"$REGION" -m1 -D -Gtopo_NZ.grd
 grd2xyz topo_NZ.grd -S > topo_NZ.xyz

 # get adjusted region bounds and resolution from img2grd output
 # ** check that rows and columns match **
 g.region n=-29.9945810754 s=-50.0056468984 w=160E e=180 \
    ewres=0:01 nsres=0.0126094 -p

 r.in.xyz in=topo_NZ.xyz out=topo_NZ_1min fs=tab
 r.colors output=topo_NZ_1min color=etopo2

To save a step or some disk space, in the above you could set the region first then pipe grd2xyz directly into r.in.xyz instead of creating the .xyz file.

 # create a r.in.xyz "n" map to test input point coverage
 r.in.xyz in=topo_NZ.xyz out=topo_NZ_1min_n fs=tab method=n
 # check rast map stats, min=max=1 and there should be no null cells
 r.univar topo_NZ_1min_n
 # cleanup
 g.remove topo_NZ_1min_n

or, import GMT .grd file directly (introduces FP +0.005 elev error??)

 # convert COARDS-compliant netCDF grdfile to old GMT native .grd
 grdreformat topo_NZ.grd topo_NZ_old.grd=bf
 # import
 r.in.bin -hf in=topo_NZ_old.grd out=topo_NZ_old
Import directly

To load it into GRASS lat/lon location (spherical):

Location setup:
http://thread.gmane.org/gmane.comp.gis.gmt.user/918
http://article.gmane.org/gmane.comp.gis.proj-4.devel/192/

Is it even possible to load directly into GRASS?

Set up Mercator/Sphere location:

  • g.setproj commands for manual projection settings
Projection type> D "other"
proj> merc
No datum
ellipsoid> sphere
radius> default (doesn't matter)
Scale Factor> 1.0
Latitude of True Scale> 0
Central Meridian> 0

Which creates:

G63> g.proj -j
+proj=merc
+k_0=1.0000000000
+lat_ts=0.0000000000
+lon_0=0.0000000000
+a=6370997
+b=6370997
+no_defs
+to_meter=1.0

G63> g.proj -w
PROJCS["Mercator",
   GEOGCS["unnamed",
       DATUM["unknown",
           SPHEROID["unnamed",6370997,"inf"]],
       PRIMEM["Greenwich",0],
       UNIT["degree",0.0174532925199433]],
   PROJECTION["Mercator_2SP"],
   PARAMETER["standard_parallel_1",0],
   PARAMETER["latitude_of_origin",0],
   PARAMETER["central_meridian",0],
   PARAMETER["false_easting",0],
   PARAMETER["false_northing",0],
   UNIT["meter",1]]


MRWORLD:PROJCS["unnamed",PROJECTION["Mercator_1SP"],
 PARAMETER["latitude_of_origin",0],
 PARAMETER["central_meridian",0],
 PARAMETER["scale_factor",1],
 PARAMETER["false_easting",20000000],
 PARAMETER["false_northing",0]]

Note Mercator_1SP vs. Mercator_2SP in the above. (does 2 std parallels merc with only one defined == 1 std par merc?)


  • Load using r.in.bin
 # the following does not work correctly, just a trial
 # offset n,s,e,w by 1/2 a grid cell?
 r.in.bin input=topo_9.1b.img output=topo_9.1b \
      title="1' worldwide relief (1.852 km-sq)" \
      -b -s bytes=2 rows=17280 cols=21600 \
      n=80.738 s=-80.738 w=0 e=360

  r.colors output=topo_9.1b color=etopo2
Official coloring

Download the "official" GMT color rules from:

wget ftp://topex.ucsd.edu/pub/global_topo_1min/gmt_examples/map/topo.cpt

Convert HSV GMT cpt color rules to RGB GRASS color rules with the r.cpt2grass add-on script.

r.cpt2grass in=topo.cpt out=palette_topo.gcolors

(HSV -> RGB conversion in that script is now partially functional)

Sidescan sonar processing

  • i.gdalwarp script for georectifying and mosaicking scanned paper rolls into a GeoTIFF

Wave exposure

  • Using GRASS to prepare and process data for the SWAN Wave Model
    • preparing input DEM
    • r.in.mat and r.out.mat


Circulation models

  • Preparing input grids
    • r.in.mat and r.out.mat

Tutorials

Remote Sensing

  • Importing MODIS Aqua SST and chlorophyll-a data, SeaWiFS chlorophyll-a, and Pathfinder AVHRR SST satellite images.

Mapping and Cartography