Hydrological Sciences

From GRASS-Wiki
Jump to navigation Jump to search

Flow calculation

  • r.carve: Takes vector stream data, transforms it to raster and subtracts depth from the output DEM.
  • r.drain: Traces a flow through an elevation model on a raster map.
  • r.fillnulls: Fills no-data areas in raster maps using v.surf.rst splines interpolation
  • r.fill.dir: Filters and generates a depressionless elevation map and a flow direction map from a given elevation layer.
  • r.flow: Construction of slope curves (flowlines), flowpath lengths, and flowline densities (upslope areas) from a raster digital elevation model (DEM)
  • r.topidx: Creates topographic index [ln(a/tan(beta))] map from elevation map.
  • r.terraflow: Flow computation for massive grids.
  • v.breach: Creates vector maps of lines and points of continuosly lowering elevation down the input watercourses, based on the input raster DEM.

Groundwater flow

  • r.gwflow: Numerical calculation program for transient, confined and unconfined groundwater flow in two dimensions.
  • r3.gwflow: Numerical calculation program for transient, confined groundwater flow in three dimensions.

Hydrological models

  • r.topmodel: Simulates TOPMODEL which is a physically based hydrological model.
  • HydroFOSS: A distributed, physically based hydrological model.

Sediment modules

  • r.sim.sediment: Sediment transport and erosion/deposition simulation using path sampling method (SIMWE)
  • r.sim.water: Overland flow hydrologic simulation using path sampling method (SIMWE)

Stream modules

For an overview, see R.stream.*.

  • r.stream.angle: Route azimuth, direction and relation to streams of higher order
  • r.stream.basins: Calculate basins according user input
  • r.stream.del: Calculate basins according user input
  • r.stream.distance: Calculate distance to and elevation above streams and outlets according user input. It can work in stream mode where target are streams and outlets mode where targets are outlets
  • r.stream.extract: Stream network extraction
  • r.stream.order: Calculate Strahler's and Horton's stream order Hack's main streams and Shreeve's stream magnitude. It use r.watershed or r.stream.extract output files: stream, direction and optionally accumulation. Output data can be either from r.watershed or r.stream.extract but not from both together
  • r.stream.pos: Route azimuth, direction and relation to streams of higher order
  • r.stream.stats:Calculate Horton's and optionally Hack's statistics according to user input

Watershed modules

  • r.basin.fill: Generates a raster map layer showing watershed subbasins.
  • r.water.outlet: Generates a watershed basin from a drainage direction map (from r.watershed) and a set of coordinates representing the outlet point of watershed.
  • r.watershed: Watershed basin analysis program.
  • r.basin: Generates the main morphometric parameters of the basin.

Tutorials:

References

  • Metz, M. et al 2009: Fast Stream Extraction from Large, Radar-Based Elevation Models with Variable Level of Detail (PDF)
  • Metz, M. et al 2010: Accurate stream extraction from large, radar-based elevation models (PDF)
  • J Jasiewicz, M Metz, 2011: A new GRASS GIS toolkit for Hortonian analysis of drainage networks, Computers & Geosciences. DOI