Python/pygrass: Difference between revisions
(+Interface to listing maps (g.list/g.mlist)) |
m (updated URL to GRASS 83 manual) |
||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'' | ''PyGRASS'' is a library that extends the GRASS GIS capabilities to allow users to access the low-level GRASS API. | ||
== | == Documentation == | ||
Detailed PyGRASS documentation: http://grass.osgeo.org/grass83/manuals/libpython/ | |||
== How to test library == | == How to test library == | ||
''pygrass'' has doctest | ''pygrass'' has 'doctest' included in its code. You can run doctest in the [http://grass.osgeo.org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz North Carolina basic location], using the mapset '''user1'''. | ||
To test | To test a single module (file) you have to change into the source code directory of pygrass and run the following code (this is an example of functions.py): | ||
<source lang="bash"> | <source lang="bash"> | ||
Line 32: | Line 15: | ||
</source> | </source> | ||
== | == References == | ||
* Zambelli, P., Gebbert, S., Ciolli, M., 2013. ''Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS)''. ISPRS International Journal of Geo-Information 2, 201–219. ([http://dx.doi.org/10.3390/ijgi2010201 DOI] | [http://www.mdpi.com/2220-9964/2/1/201/pdf PDF]) | |||
* [http://grass.osgeo.org/grass71/manuals/libpython/ pyGrass documentation] (updated weekly from SVN) | |||
* | |||
== Sample PyGRASS scripts == | |||
=== | === Training material === | ||
Two workshops were presented during the [http://geomorfolab.arch.unige.it/genova2013/ XIV Italian meeting of GRASS] at Genova. | |||
The workshops use '''ipython notebook''' to show the python and pygrass API, all the material are available on github ([https://github.com/zarch/workshop-python python], [https://github.com/zarch/workshop-pygrass pygrass]). All the execute examples are reported here: | |||
* python training (Genova) | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/00_intro.ipynb Introduction] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/01_data_types.ipynb Data Types] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/02_syntax.ipynb Syntax] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/03_function.ipynb Function] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/04_class.ipynb Class] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-python/master/05_other.ipynb Other] | |||
* | * python training (EURAC) | ||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/00_intro.ipynb Introduction] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/01_data_types.ipynb Data Types] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/02_syntax.ipynb Syntax] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/03_version_control_system.ipynb Version Control System (hg)] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/04_objects.ipynb Objects] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/05_python_debugger.ipynb Debugger] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/06_functions.ipynb Functions] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/07_numpy.ipynb Numpy] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/08_matplotlib.ipynb Matplotlib] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/09_scipy.ipynb Scipy] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/10_pandas.ipynb Pandas] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/11_sympy.ipynb Sympy] | |||
** [http://nbviewer.ipython.org/urls/bitbucket.org/zarch/python-course/raw/teacher/12_user_interfaces.ipynb GUI] | |||
* | * pygrass training | ||
* [http:// | ** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-pygrass/master/00_Modules.ipynb Modules] | ||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-pygrass/master/01_GIS_objects.ipynb GIS] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-pygrass/master/02_Vector.ipynb Vector] | |||
** [http://nbviewer.ipython.org/urls/raw.github.com/zarch/workshop-pygrass/master/03_Raster.ipynb Raster] | |||
== | === Interface to listing maps (g.list/g.mlist) === | ||
Here we call a GRASS module that writes to stdout and do not call a Python function that returns a Python object, therefore we can save stdout and then parse it with: | |||
<source lang="python"> | <source lang="python"> | ||
from grass.pygrass.modules.shortcuts import general as g | from grass.pygrass.modules.shortcuts import general as g | ||
import subprocess as sub | import subprocess as sub | ||
gl = g. | |||
gl(type=' | gl = g.list # GRASS 7 | ||
gl(type='raster', pattern='elev-*', stdout=sub.PIPE) | |||
gl.outputs.stdout.split() | gl.outputs.stdout.split() | ||
['elev-000-000', 'elev-000-001', 'elev-000-002', 'elev-001-000', | ['elev-000-000', 'elev-000-001', 'elev-000-002', 'elev-001-000', | ||
Line 89: | Line 84: | ||
</source> | </source> | ||
that uses the "G_list" function through ctypes and therefore is faster. | ... that uses the "G_list" function through ctypes and therefore is faster. | ||
If you choose the first solution is better if you use directly the | Note: If you choose the first solution it is better if you use directly the | ||
function in [http://grass.osgeo.org/programming7/namespacepython_1_1script_1_1core.html python.script.core.mlist_grouped() etc.]. | function in [http://grass.osgeo.org/programming7/namespacepython_1_1script_1_1core.html python.script.core.mlist_grouped() etc.]. | ||
=== Interface to copying maps (g.copy) === | |||
<source lang="python"> | |||
from grass.pygrass.modules.shortcuts import general as g | |||
vectinmap = 'zipcodes_wake' | |||
vectoutmap = 'zip_elev_zonal' | |||
g.copy(vector=(vectinmap,vectoutmap)) | |||
</source> | |||
=== Sample script for opening, query and closing of a vector map === | === Sample script for opening, query and closing of a vector map === | ||
Line 152: | Line 156: | ||
#USER HAS TO SET THOSE | #USER HAS TO SET THOSE | ||
#QUIET REPORTS | #QUIET REPORTS | ||
QUIET=True | |||
#OVERWRITE EXISTING FILES | #OVERWRITE EXISTING FILES | ||
OVR=False | OVR=False | ||
Line 283: | Line 287: | ||
print "Prefix IN:\t",pref | print "Prefix IN:\t",pref | ||
print "Prefix OUT:\t", outpref | print "Prefix OUT:\t", outpref | ||
i.landsat_toar(input_prefix=pref,output_prefix=outpref,metfile=metadata[0],sensor=LSENSOR,quiet= | i.landsat_toar(input_prefix=pref,output_prefix=outpref,metfile=metadata[0],sensor=LSENSOR,quiet=QUIET,overwrite=OVR) | ||
#Atmospheric Correction | #Atmospheric Correction | ||
print "Atmospheric Correction" | print "Atmospheric Correction" | ||
Line 334: | Line 338: | ||
print "\t> ",b | print "\t> ",b | ||
print "\t> ",b_out | print "\t> ",b_out | ||
i.atcorr(input=b, elevation="dem", visibility="vis", parameters=prm, output=b_out, flags="ra", range=[0,1],quiet= | i.atcorr(input=b, elevation="dem", visibility="vis", parameters=prm, output=b_out, flags="ra", range=[0,1],quiet=QUIET,overwrite=OVR) | ||
r.timestamp(map=b_out,date=timestamp,finish_=False) | r.timestamp(map=b_out,date=timestamp,finish_=False) | ||
satbandno = satbandno + 1 | satbandno = satbandno + 1 | ||
Line 362: | Line 366: | ||
b_ndvi=pref[:-2]+".surf.ndvi" | b_ndvi=pref[:-2]+".surf.ndvi" | ||
print "NDVI:\t",b_ndvi | print "NDVI:\t",b_ndvi | ||
i.vi(red=b3,nir=b4,output=b_ndvi,viname="ndvi",quiet= | i.vi(red=b3,nir=b4,output=b_ndvi,viname="ndvi",quiet=QUIET,overwrite=OVR,finish_=False) | ||
b_in=[b1,b2,b3,b4,b5,b7] | b_in=[b1,b2,b3,b4,b5,b7] | ||
b_albedo=pref[:-2]+".surf.albedo" | b_albedo=pref[:-2]+".surf.albedo" | ||
print "Albedo:\t",b_albedo | print "Albedo:\t",b_albedo | ||
i.albedo(input=b_in,output=b_albedo,flags="lc",quiet= | i.albedo(input=b_in,output=b_albedo,flags="lc",quiet=QUIET,overwrite=OVR,finish_=False) | ||
b_emissivity=pref[:-2]+".surf.emissivity" | b_emissivity=pref[:-2]+".surf.emissivity" | ||
print "Emissivity:\t",b_emissivity | print "Emissivity:\t",b_emissivity | ||
i.emissivity(input=b_ndvi, output=b_emissivity,quiet= | i.emissivity(input=b_ndvi, output=b_emissivity,quiet=QUIET,overwrite=OVR,finish_=False) | ||
</source> | |||
=== Multiprocessing example: parallelized SHAPE file import === | |||
<source lang="python"> | |||
#!/usr/bin/env python | |||
# -*- coding: utf-8 -*- | |||
""" | |||
Multiprocessing example: parallelized SHAPE file import | |||
Created on Fri, Oct 18, 2013, posted to grass-user@lists.osgeo.org | |||
@author: Pietro Zambelli, freely inspired by: http://stackoverflow.com/a/16071616 | |||
http://lists.osgeo.org/pipermail//grass-user/2013-October/069130.html | |||
""" | |||
# Directory containing SHAPE files to import | |||
DIR = '/data/shp' | |||
### | |||
from multiprocessing import Queue, Process, cpu_count | |||
from os.path import split | |||
from subprocess import Popen | |||
from grass.pygrass.functions import findfiles | |||
def spawn(func): | |||
def fun(q_in, q_out): | |||
while True: | |||
path, cmdstr = q_in.get() | |||
if path is None: | |||
break | |||
q_out.put(func(path, cmdstr)) | |||
return fun | |||
def mltp_importer(dirpath, match, cmdstr, func, nprocs=cpu_count()): | |||
q_in = Queue(1) | |||
q_out = Queue() | |||
procs = [Process(target=spawn(func), args=(q_in, q_out)) | |||
for _ in range(nprocs)] | |||
for proc in procs: | |||
proc.daemon = True | |||
proc.start() | |||
# set the parameters | |||
sent = [q_in.put((path, cmdstr)) for path in findfiles(dirpath, match)] | |||
# set the end of the cycle | |||
[q_in.put((None, None)) for proc in procs] | |||
[proc.join() for proc in procs] | |||
return [q_out.get() for _ in range(len(sent))] | |||
def importer(path, cmdstr): | |||
name = split(path)[-1][:-4] | |||
print name | |||
popen = Popen(cmdstr.format(path=path, name=name), shell=True) | |||
popen.wait() | |||
return path, name, False if popen.returncode else True | |||
CMD = 'v.in.ogr dsn={path} layer={name} output={name}' | |||
processed = mltp_importer(DIR, '*.shp', CMD, importer) | |||
# check for errors | |||
errors = [p for p in processed if not p[2]] | |||
if errors: | |||
# do something (print list of failed SHP files at end) | |||
pass | |||
</source> | </source> | ||
{{Python}} | {{Python}} |
Latest revision as of 21:30, 1 December 2023
PyGRASS is a library that extends the GRASS GIS capabilities to allow users to access the low-level GRASS API.
Documentation
Detailed PyGRASS documentation: http://grass.osgeo.org/grass83/manuals/libpython/
How to test library
pygrass has 'doctest' included in its code. You can run doctest in the North Carolina basic location, using the mapset user1.
To test a single module (file) you have to change into the source code directory of pygrass and run the following code (this is an example of functions.py):
python -m doctest functions.py
References
- Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2, 201–219. (DOI | PDF)
- pyGrass documentation (updated weekly from SVN)
Sample PyGRASS scripts
Training material
Two workshops were presented during the XIV Italian meeting of GRASS at Genova. The workshops use ipython notebook to show the python and pygrass API, all the material are available on github (python, pygrass). All the execute examples are reported here:
- python training (Genova)
- python training (EURAC)
Interface to listing maps (g.list/g.mlist)
Here we call a GRASS module that writes to stdout and do not call a Python function that returns a Python object, therefore we can save stdout and then parse it with:
from grass.pygrass.modules.shortcuts import general as g
import subprocess as sub
gl = g.list # GRASS 7
gl(type='raster', pattern='elev-*', stdout=sub.PIPE)
gl.outputs.stdout.split()
['elev-000-000', 'elev-000-001', 'elev-000-002', 'elev-001-000',
'elev-001-001', 'elev-001-002', 'elev-002-000', 'elev-002-001',
'elev-002-002']
or you can use the "glist" method of the Mapset class:
from grass.pygrass.gis import Mapset
m = Mapset()
m.glist('rast', pattern='elev-*')
['elev-002-000', 'elev-000-000', 'elev-000-002', 'elev-000-001',
'elev-001-001', 'elev-002-002', 'elev-002-001', 'elev-001-000',
'elev-001-002']
... that uses the "G_list" function through ctypes and therefore is faster.
Note: If you choose the first solution it is better if you use directly the function in python.script.core.mlist_grouped() etc..
Interface to copying maps (g.copy)
from grass.pygrass.modules.shortcuts import general as g
vectinmap = 'zipcodes_wake'
vectoutmap = 'zip_elev_zonal'
g.copy(vector=(vectinmap,vectoutmap))
Sample script for opening, query and closing of a vector map
#!/usr/bin/env python
# Example for pyGRASS usage - vector API
from grass.pygrass.modules.shortcuts import general as g
from grass.pygrass.vector import VectorTopo
g.message("Assessing vector topology...")
vectmap = 'zipcodes_wake'
zipcodes = VectorTopo(vectmap)
# Open the map with topology:
zipcodes.open()
# query number of topological features
areas = zipcodes.number_of("areas")
islands = zipcodes.number_of("islands")
print 'Map: <' + vectmap + '> with %d areas and %d islands' % (areas, islands)
# http://www.ing.unitn.it/~zambelli/projects/pygrass/attributes.html
# (note that above documentation is slightly outdated)
dblink = zipcodes.dblinks[0]
print 'DB name:'
print dblink.database
table = dblink.table()
print 'Column names:'
print table.columns.names()
print 'Column types:'
print table.columns.types()
zipcodes.close()
Sample script for Landsat 7 processing
#!/usr/bin/env python
#Date: 7th February, 2013
#Public domain, GRASS GIS
#Run this script in the terminal as:
#python python-grass.py
#For debugging, run as:
#python -i python-grass.py
#PURPOSE
#This script processes LANDSAT 7 ETM+ images
#1 - unzip *.gz files
#2 - import files in GRASS GIS Location of your choice (r.in.gdal)
#3 - DN to Top of Atmosphere reflectance (i.landsat.toar)
#4 - TOA reflectance to Surface reflectance (i.atcorr)
#5 - NDVI (i.vi), Albedo (i.albedo), Emissivity (i.emissivity)
#USER HAS TO SET THOSE
#QUIET REPORTS
QUIET=True
#OVERWRITE EXISTING FILES
OVR=False
#Define Landsat 7 sensor for i.landsat.toar
LSENSOR="tm7"
#Setup the path to the Landsat 7 Directories
rsdatapath="/home/yann/RSDATA/Myanmar/L7"
#Setup your GRASS GIS working directory
gisdb="/home/yann/GRASSDATA"
location="L7_Myanmar"
print location
mapset="PERMANENT"
#DEM input to atmospheric correction
inDEM=rsdatapath+"/dem.tif"
#set L7 Metadata wildcards
wldc_mtl="*_MTL.txt"
#wldc_met="*.met"
#Visibility distance [Km]
vis=18
#Set python path to enable finding of grass.script lib
#END OF USER CHANGES
###DO NOT CHANGE ANYTHING AFTER THIS LINE !
###
#Load necessary libraries
import os, glob, time, re
from grass import script as g
from grass.script import setup as gsetup
gisbase=os.environ['GISBASE']
gsetup.init(gisbase,gisdb,location,mapset)
from grass.pygrass.modules.shortcuts import raster as r
from grass.pygrass.modules.shortcuts import imagery as i
from grass.pygrass.modules.shortcuts import display as d
#Needed for floor()
from math import *
#env = os.environ.copy()
#env['GRASS_MESSAGE_FORMAT'] = 'gui'
#Function to get a list of L7 Directories in the rsdatapath
def fn(path):
for top, dirs, files in os.walk(path):
return [os.path.join(top, dir) for dir in dirs]
#START PROCESS
### PART 0: PRE-PROCESSING STUFF ###
#import DEM for atmospheric correction
#r.in.gdal(input=inDEM,output="dem",overwrite=OVR)
#r.mapcalc(expression="dem=25",overwrite=OVR)
#create a visibility map
r.mapcalc(expression="vis=18",overwrite=OVR)
#Find the central location of the Landsat file from metadata
metadata=[]
fileList=[]
L7Dirs=fn(rsdatapath)
for L7Dir in L7Dirs:
#Ungzip all of your Landsat7 images in all your directories
# print "Ungzip Landsat files in\t",L7Dir
# p=os.system("gzip -d -q "+L7Dir+"/*.gz")
#Using pthreads on multi-core machines
#p=os.system("pigz -d "+L7Dir+"/*.gz")
#Wait ten seconds for gzip to create the tif images
# time.sleep(10)
print "Import in GRASS GIS"
for L7f in glob.glob(os.path.join(L7Dir,"*.[tT][iI][fF]")):
f1=L7f.replace(L7Dir+"/","")
f2=f1.replace(".TIF","")
f3=f2.replace("_B10",".1")
f4=f3.replace("_B20",".2")
f5=f4.replace("_B30",".3")
f6=f5.replace("_B40",".4")
f7=f6.replace("_B50",".5")
f8=f7.replace("_B61",".61")
f9=f8.replace("_B62",".62")
f10=f9.replace("_B70",".7")
f11=f10.replace("_B80",".8")
f12=f11.replace("L72","L71")
L7r=f12.replace("_VCID_","")
print "\t> ",L7r
r.in_gdal(input=L7f,output=L7r,flags="e",overwrite=OVR)
fileList.append(L7r)
#reproject the DEM World map for the new PERMANENT location extents
r.proj(input="dem",location="Myanmar",memory=10000,resolution=90.0,overwrite=OVR)
#Get list of metadata files
for metaf in glob.glob(os.path.join(L7Dir,wldc_mtl)):
metadata.append(metaf)
print "Metadata in:\n",metadata[0]
with open(metadata[0],"r") as f:
data=f.read()
f.close()
dt=data.split("\n")
for idx in range(len(dt)):
found=dt[idx].find("CORNER_UL_LON_PRODUCT = ")
if found > 0:
ulx=float(dt[idx].replace("CORNER_UL_LON_PRODUCT = ",""))
found=dt[idx].find("CORNER_UL_LAT_PRODUCT = ")
if found > 0:
uly=float(dt[idx].replace("CORNER_UL_LAT_PRODUCT = ",""))
found=dt[idx].find("CORNER_LR_LON_PRODUCT = ")
if found > 0:
lrx=float(dt[idx].replace("CORNER_LR_LON_PRODUCT = ",""))
found=dt[idx].find("CORNER_LR_LAT_PRODUCT = ")
if found > 0:
lry=float(dt[idx].replace("CORNER_LR_LAT_PRODUCT = ",""))
#Two cases, because a string starting by 0 is not converted well
found=dt[idx].find("SCENE_CENTER_TIME = ")
if found > 0:
tim=dt[idx].replace("SCENE_CENTER_TIME = ","")
print "timestamp=",str(tim)
gmth=float(tim.split(":")[0])
gmtm=float(tim.split(":")[1])
gmtdec=float(tim.split(":")[2].replace("Z",""))
print gmth,gmtm,gmtdec
found=dt[idx].find("DATE_ACQUIRED = ")
if found > 0:
dat=dt[idx].replace("DATE_ACQUIRED = ","")
date=dat.split("-")
found=dt[idx].find("SUN_ELEVATION = ")
if found > 0:
sunza=90-float(dt[idx].replace("SUN_ELEVATION = ",""))
#L7 DN->Rad->Ref
print "Convert DN to Rad to TOARef"
f1=sorted(fileList)[0]
f2=f1.replace(L7Dir+"/","")
pref=f2[:-1]
outpref=pref[:-2]+".toar."
print "Prefix IN:\t",pref
print "Prefix OUT:\t", outpref
i.landsat_toar(input_prefix=pref,output_prefix=outpref,metfile=metadata[0],sensor=LSENSOR,quiet=QUIET,overwrite=OVR)
#Atmospheric Correction
print "Atmospheric Correction"
# Basic script for i.atcorr for L 7 ETM+
#Geometrical conditions (L7ETM+)
geom=7
#Sensor height (satellite is -1000)
sens_height=-1000
#Here we suppose you have altitude (DEM) and Visibility (VIS) maps ready
#---------------------------------------------
#Visibility dummy value (overwritten by VIS raster input)
vis=15
#Altitude dummy value (in Km should be negative in this param file)
#(overwritten by DEM raster input)
alt=-1.200
#datetime of satellite overpass (month, day, GMT decimal hour)
mdh=str(int(date[1]))+" "+str(int(date[2]))+" "+str("%.2f" % (gmth+gmtm/60.0+gmtdec/3600.0))
print "MM DD hh.ddd:\t",mdh
# Central Lat/Long
Long=ulx+(lrx-ulx)/2.0
Lat=lry+(uly-lry)/2.0
print "Center:\t(",Long, ",", Lat,")"
#Atmospheric mode
atm_mode=1 #Tropical
#Aerosol model
aerosol_mode=2 #Sri Lanka is a small island (maritime)
#satellite band number (L5TM [25,26,27,28,29,30], L7ETM+ [61,62,63,64,65,66,67])
satbandno=61 #Band 1 of L7ETM+ is first to undergo atmospheric correction
#make time stamp for use in time series analysis
dat1=str(date[2])+"-"+str(date[1])+"-"+str(date[0])
dat=dat1.replace(" ","")
timestamp=time.strftime("%d %b %Y",time.strptime(dat,"%d-%m-%Y"))
print "Timestamp:\t",timestamp
for idx in [1,2,3,4,5,7]:
b=pref[:-2]+".toar."+str(idx)
b_out=b.replace(".toar.",".surf.")
param=[]
param.append(str(geom)+" - geometrical conditions=Landsat 7 ETM+\n")
param.append(str(mdh)+" "+str("%.2f" % Long)+" "+str("%.2f" % Lat)+" - month day hh.ddd longitude latitude (hh.ddd is in decimal hours GMT)\n")
param.append(str(atm_mode)+" - atmospheric mode=tropical\n")
param.append(str(aerosol_mode)+" - aerosols model=maritime\n")
param.append(str(vis)+" - visibility [km] (aerosol model concentration), not used as there is raster input\n")
param.append(str(alt)+" - mean target elevation above sea level [km] (here 600m asl), not used as there is raster input\n")
param.append(str(sens_height)+" - sensor height (here, sensor on board a satellite)\n")
param.append(str(satbandno)+" - i th band of ETM+ Landsat 7 (atcorr internal no)\n")
f=open(os.path.join(L7Dir,"param_L7.txt"),"w")
f.writelines(param)
f.close()
prm=os.path.join(L7Dir,"param_L7.txt")
print "\t> ",b
print "\t> ",b_out
i.atcorr(input=b, elevation="dem", visibility="vis", parameters=prm, output=b_out, flags="ra", range=[0,1],quiet=QUIET,overwrite=OVR)
r.timestamp(map=b_out,date=timestamp,finish_=False)
satbandno = satbandno + 1
#Allocate surface reflectance names
b1=pref[:-2]+".surf.1"
b2=pref[:-2]+".surf.2"
b3=pref[:-2]+".surf.3"
b4=pref[:-2]+".surf.4"
b5=pref[:-2]+".surf.5"
b61=pref[:-2]+".toar.61"
b62=pref[:-2]+".toar.62"
b7=pref[:-2]+".surf.7"
b8=pref[:-2]+".surf.8"
### PART 1: BASIC STUFF ###
b_in=pref[:-2]+".toar."
b_clouds=pref[:-2]+".toar.acca"
print "Clouds:\t\t>",b_clouds
i.landsat_acca(input_prefix=b_in,output=b_clouds,overwrite=OVR)
#png_clouds=L7Dir+"/"+pref[:-2]+".clouds.png"
#d.mon(start='png',output=png_clouds,width=800,height=800)
print "MASK:\t\tON"
#Should always be rewritten!
r.mask(raster=b_clouds,flags="i",overwrite=True)
b_ndvi=pref[:-2]+".surf.ndvi"
print "NDVI:\t",b_ndvi
i.vi(red=b3,nir=b4,output=b_ndvi,viname="ndvi",quiet=QUIET,overwrite=OVR,finish_=False)
b_in=[b1,b2,b3,b4,b5,b7]
b_albedo=pref[:-2]+".surf.albedo"
print "Albedo:\t",b_albedo
i.albedo(input=b_in,output=b_albedo,flags="lc",quiet=QUIET,overwrite=OVR,finish_=False)
b_emissivity=pref[:-2]+".surf.emissivity"
print "Emissivity:\t",b_emissivity
i.emissivity(input=b_ndvi, output=b_emissivity,quiet=QUIET,overwrite=OVR,finish_=False)
Multiprocessing example: parallelized SHAPE file import
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Multiprocessing example: parallelized SHAPE file import
Created on Fri, Oct 18, 2013, posted to grass-user@lists.osgeo.org
@author: Pietro Zambelli, freely inspired by: http://stackoverflow.com/a/16071616
http://lists.osgeo.org/pipermail//grass-user/2013-October/069130.html
"""
# Directory containing SHAPE files to import
DIR = '/data/shp'
###
from multiprocessing import Queue, Process, cpu_count
from os.path import split
from subprocess import Popen
from grass.pygrass.functions import findfiles
def spawn(func):
def fun(q_in, q_out):
while True:
path, cmdstr = q_in.get()
if path is None:
break
q_out.put(func(path, cmdstr))
return fun
def mltp_importer(dirpath, match, cmdstr, func, nprocs=cpu_count()):
q_in = Queue(1)
q_out = Queue()
procs = [Process(target=spawn(func), args=(q_in, q_out))
for _ in range(nprocs)]
for proc in procs:
proc.daemon = True
proc.start()
# set the parameters
sent = [q_in.put((path, cmdstr)) for path in findfiles(dirpath, match)]
# set the end of the cycle
[q_in.put((None, None)) for proc in procs]
[proc.join() for proc in procs]
return [q_out.get() for _ in range(len(sent))]
def importer(path, cmdstr):
name = split(path)[-1][:-4]
print name
popen = Popen(cmdstr.format(path=path, name=name), shell=True)
popen.wait()
return path, name, False if popen.returncode else True
CMD = 'v.in.ogr dsn={path} layer={name} output={name}'
processed = mltp_importer(DIR, '*.shp', CMD, importer)
# check for errors
errors = [p for p in processed if not p[2]]
if errors:
# do something (print list of failed SHP files at end)
pass