Image processing: Difference between revisions
(use {{cmd|imageryintro}} macro) |
|||
Line 208: | Line 208: | ||
== Evapotranspiration == | == Evapotranspiration == | ||
* i.eb.* and i.evapo.* are modules dedicated to evapotranspiration, see {{cmd|topic_evapotranspiration | * i.eb.* and i.evapo.* are modules dedicated to evapotranspiration, see {{cmd|topic_evapotranspiration}} | ||
Please look at [[Image_processing/Evapotranspiration]] for some background information. | Please look at [[Image_processing/Evapotranspiration]] for some background information. |
Revision as of 06:43, 6 November 2018
Introduction
For a general overview, see "Introduction: image processing in GRASS GIS" at imageryintro.
General introduction
Digital numbers and physical values (reflection/radiance-at-sensor):
Satellite imagery is commonly stored in Digital Numbers (DN) for minimizing the storage volume, i.e. the originally sampled analog physical value (color, temperature, etc) is stored a discrete representation in 8-16 bits. For example, Landsat data are stored in 8bit values (i.e., ranging from 0 to 255); other satellite data may be stored in 10 or 16 bits. Having data stored in DN, it implies that these data are not yet the observed ground reality. Such data are called "at-satellite", for example the amount of energy sensed by the sensor of the satellite platform is encoded in 8 or more bits. This energy is called radiance-at-sensor. To obtain physical values from DNs, satellite image providers use a linear transform equation (y = a * x + b) to encode the radiance-at-sensor in 8 to 16 bits. DNs can be turned back into physical values by applying the reverse formula (x = (y - b) / a).
The GRASS GIS module i.landsat.toar easily transforms Landsat DN to radiance-at-sensor. The equivalent module for ASTER data is i.aster.toar. For other satellites, r.mapcalc can be employed.
Reflection/radiance-at-sensor and surface reflectance
When radiance-at-sensor has been obtained, still the atmosphere influences the signal as recorded at the sensor. This atmospheric interaction with the sun energy reflected back into space by ground/vegetation/soil needs to be corrected. There are two ways to apply atmospheric correction for satellite imagery. The simple way for Landsat is with i.landsat.toar, using the DOS correction method. The more accurate way is using i.atcorr (which works for many satellite sensors). The atmospherically corrected sensor data represent surface reflectance, which ranges theoretically from 0 % to 100 %. Note that this level of data correction is the proper level of correction to calculate vegetation indices.
Image processing in GRASS GIS
Satellite imagery and orthophotos (aerial photographs) are handled in GRASS as raster maps and specialized tasks are performed using the imagery (i.*) modules. All general operations are handled by the raster modules.
- imageryintro: A short introduction to image processing in GRASS 6
- Full GRASS 4.0 Image Processing manual (PDF, 47 pages)
- imagery: Imagery module help pages
- Data import is generally handled by the r.in.gdal module
Screenshots
- The imagery screenshots page
Importing
The wxGUI offers a convenient tool for single map and bulk import:
- see Importing data
Satellite Data
Ocean Color
Sea Surface Temperature (SST)
High Resolution Data
Commercial satellite imagery
See also,
- Spectral Response specifications for IKONOS, GeoEye, QuickBird, WorldView
- various Whitepapers on High Resolution Satellite Imagery
Orthophotos
The wxGUI offers a convenient tool for single map and bulk import:
- see Importing data
Preprocessing
See also NASA LaRC Satellite Overpass Predictor
Geometric preprocessing/Georectification
- Georectification tool is available from the File menu in the GUI.
- i.points, i.vpoints (scanned maps, satellite images)
- i.ortho.photo (aerial images)
A multi-band image may be grouped and georectified with a single set of ground control points (i.group, i.target, i.rectify).
See also the Georeferencing wiki page
Orthorectification
Radiometric preprocessing
- use r.mapcalc to apply gain/bias formula
- LANDSAT: you can also use i.landsat.toar
from GRASS AddOns(included since 6.4)
Correction for atmospheric effects
Visit the dedicated page on Atmospheric correction
Related Modules
- i.landsat.dehaze: simple dark-object/Tasseled Cap based haze minimization (from GRASS AddOns)
- i.atcorr: more complex correction but based on atmospheric models
Correction for topographic/terrain effects
In rugged terrain, such correction might be useful to minimize negative effects.
- simple "cosine correction" using r.sunmask, r.mapcalc (tends to overshoot when slopes are high)
- In i.topo.corr the following correction methods are implemented: cosine, minnaert, percent, c-factor.
- Note, that for the sun's zenith (in degrees) parameter, the equation "Sun's Zenith = 90 - Sun's Elevation" is generally valid
Examples:
- Topographic correction of Landsat imagery using GRASS GIS (Blog article)
Cloud removal
- with i.landsat.acca
Image classification
See the dedicated Image classification page.
Image segmentation
- i.smap: Performs contextual image classification using sequential maximum a posteriori (SMAP) estimation
- i.segment: Image Segmentation
- r.smooth.seg: Performs image segmentation and discontinuity detection (based on the Mumford-Shah variational model) (addon)
- i.superpixels.slic: : Perform image segmentation using the SLIC segmentation method (addon)
Edge detection
Filtering
Fourier Transform
- i.fft, i.ifft
- see also Image destriping
- see also Fourier transforms for multitemporal analysis
Canonical Component Analysis
Principal Component Analysis
- i.pca
- see also Principal Components Analysis
Texture
A series of commonly used texture measures (derived from the Grey Level Co-occurrence Matrix, GLCM), also called Haralick's texture features are available:
- r.texture: In case of panchromatic maps or limited amount of channels, it is often recommended to generate synthetic channels through texture analysis
See here and here for the formulas to calculate texture. See also canopy texture mapping.
Spectral unmixing
- i.spec.unmix is used to perform "Spectral Unmixing"
- i.spec.sam is used to perform "Spectral Angle Mapping"
Thermal remote sensing
- r.mapcalc can be used to convert from DN (digital number) of arbitrary sensors to Kelvin/Celsius/...
- i.landsat.toar - Calculates top-of-atmosphere radiance or reflectance and temperature for Landsat MSS/TM/ETM+/OLI
- i.landsat8.swlst (src) Practical split-window algorithm estimating Land Surface Temperature from Landsat 8 OLI/TIRS imagery
- i.aster.toar - Calculates top-of-atmosphere radiance or reflectance and temperature for ASTER
- MODIS
Time series analysis
- r.series- Makes each output cell value a function of the values assigned to the corresponding cells in the input raster map layers.
- see also Time series
- see also Time series development
- see also MODIS
Enhancements
Radiometric Enhancements
- i.landsat.rgb (GRASS 6.x) | i.colors.enhance (GRASS 7.x)
- Decorrelation stretching with r.colors or r.mapcalc
- Density slicing with r.colors
- Principal Component Analysis with i.pca
Geometric Enhancements - Image Fusion - Pansharpening - Image Segmentation
Image fusion and Pansharpening:
- i.pansharpen: Image fusion algorithms to sharpen multispectral with high-res panchromatic channels
- i.rgb.his and i.his.rgb: can be used for image fusion
Segmentation:
- r.smooth.seg which performs image segmentation and discontinuity detection (based on the Mumford-Shah variational model). The module generates a piece-wise smooth approximation of the input raster map and a raster map of the discontinuities of the output approximation. The discontinuities of the output approximation are preserved from being smoothed. (Addons)
- i.segment: Identifies segments (objects) from imagery data (GRASS 7)
Optimal channel selection for color composites
Vegetation indices
Water indices
- i.wi: Calculates different types of water indices (addon)
Biomass indices
Evapotranspiration
- i.eb.* and i.evapo.* are modules dedicated to evapotranspiration, see topic_evapotranspiration
Please look at Image_processing/Evapotranspiration for some background information.
Stereo anaglyphs
- see Stereo anaglyphs
Ideas collection for improving GRASS' Image processing capabilities
Below modules need some tuning before being added to GRASS 6. Volunteers welcome.
libCTL - Library for affine, Helmert and projective transformations in 2D
To be evaluated: plain C translation https://svn.code.sf.net/p/gvsigce/code/trunk/libraries/libCTL/
- requires GNU Scientific Library for the matrix algebra
- It is a small library that provides a handful of transformation methods from source to target (2D) coordinates. Currently, this includes affine, Helmert and projective transformations in 2D.
- The main library is written in plain C and the transformation functions are a plain C conversion of the methods found in the QGIS (www.qgis.org) Georeferencer Plugin (projective and Helmert transformations) and Olivier Dalang's "worldfile transform" (https://gist.github.com/olivierdalang/ba97fc986ade4545068d).
- author: B Ducke
Spectral unmixing ideas for processing hyperspectral image data
- Make use of the Spectral Python (SPy) which is a pure Python module for processing hyperspectral image data
Spectral angle mapping ideas
Geocoding ideas
- i.homography: geocoding with lines (instead of points) with homography (as improved i.points; it was formerly called i.linespoints)
- support splines from GDAL (see GRASS_AddOns#Imagery_add-ons)
- New Georectifier: see also http://gama.fsv.cvut.cz/~landa/grass/swf/georect.html
Image matching ideas
- i.points.auto: automated search of GCPs based on FFT correlation (as improved i.points)
- Reference: M. Neteler, D. Grasso, I. Michelazzi, L. Miori, S. Merler, and C. Furlanello, 2005: An integrated toolbox for image registration, fusion and classification. International Journal of Geoinformatics, 1(1), pp. 51-61 PDF
Image classification ideas
- pr: C code for classification problems
- GRASS implementation: i.pr.* source code is available here)
Stereo ideas
This is stand-alone stereo modeling software (DEM extraction etc). Waits for integration into GRASS.
Bundle block adjustment
Needed to orthorectify a series aerial images taken sequentially with overlap. "Historical" method which is nowadays interesting for UAV flights with octocopters and such.
Automatec GPC search could be done by "auto-sift".
Available: Octave code which prepares input to an i.ortho.photo batch job (contact Markus Neteler).
Lidar LAS format
LAS Tools by M. Isenburg, Howard Butler et al.: http://www.liblas.org
las2txt | r.in.xyz in=- fs=" "
Update: r.in.lidar and v.in.lidar implemented by Markus Metz (GRASS 7), but las2txt is still useful for added control such as filtering or importing secondary data streams such as intensity.
(see LIDAR)
Improving the existing code
It might be sensible to merge the various image libraries:
- GRASS 6 standard libs:
- lib/imagery/: standard lib, in use (i.* except for i.points3, i.rectify3, see below)
- imagery/i.ortho.photo/libes/: standard lib, in use (i.ortho.photo, photo.*)
- GRASS 5 (! only) image3 lib:
- libes/image3/: never finished improvement which integrated the standard lib and the ortho lib. Seems to provide also ortho rectification for satellite data (i.points3, i.rectify3)
- GRASS 5/6 image proc commands:
- merge of i.points, i.vpoints, i.points3 (see above)
- merge of i.rectify and i.rectify3 (see above)
addition of new resampling algorithms such as bilinear, cubic convolution (take from r.proj or r.resamp.aggreg)(done 10/2010)- add other warping methods (maybe lanczos or thin splines from GDAL?): Addons#i.warp
- implement/finish linewise ortho-rectification of satellite data
Bibliography
- Search for "GRASS GIS Image processing" - Google Scholar
- Search for "GRASS GIS Remote Sensing" - Google Scholar