R statistics/rgrass: Difference between revisions

From GRASS-Wiki
Jump to navigation Jump to search
(GRASS in R - rewrite most of the section)
(edit batch section)
Line 363: Line 363:


[[File:Grass7_rstudio.png|thumb|500px|center|RStudio used in GRASS GIS session]]
[[File:Grass7_rstudio.png|thumb|500px|center|RStudio used in GRASS GIS session]]
== GRASS within R ==


== GRASS within R ==
== GRASS within R ==
Line 373: Line 371:
version, if the gisBase argument is missing, initGRASS() will do a minimal effort of guessing it. Firstly, if a GRASS_INSTALLATION environment variable is availabe, then its value will automatically be used for gisBase. If not, then the system command <tt>grass --config path</> will be tried to get the value of GISBASE that corresponds to the GRASS installation in the system PATH (if any).
version, if the gisBase argument is missing, initGRASS() will do a minimal effort of guessing it. Firstly, if a GRASS_INSTALLATION environment variable is availabe, then its value will automatically be used for gisBase. If not, then the system command <tt>grass --config path</> will be tried to get the value of GISBASE that corresponds to the GRASS installation in the system PATH (if any).


If users, in any case want to pass the path to GRASS installation themselves, they can run:
If users, still want/need to pass the path to GRASS installation themselves, they can run:


<source lang="bash">
<source lang="bash">
Line 438: Line 436:


<source lang="rsplus">
<source lang="rsplus">
library(terra)
x <- rast()
x <- rast()
x
x
Line 447: Line 446:
</source>
</source>


Then, we use that object to provide an EPSG to our temporary location via the SG= parameter and start GRASS:
Then, we use that object to provide an EPSG to our temporary location via the SG= parameter and we start GRASS:


<source lang="rsplus">
<source lang="rsplus">
Line 455: Line 454:
</source>
</source>


After that, users can write raster and vector maps into GRASS with write_RAST() and write_VECT(), use GRASS GIS modules over those data with execGRASS() and export the results back to R with read_RAST() and read_VECT() as exemplified above.
After that, users can write their raster and vector maps into GRASS with write_RAST() and write_VECT(), use GRASS GIS modules over those data with execGRASS() and export the results back to R with read_RAST() and read_VECT() as exemplified above.


=== Existing location ===
=== Existing location ===


In the case of existing locations, users will provide the path to them as shown before and read data from GRASS database into R
In the case of existing locations and mapsets, users will provide the path to them via the location= and mapset= parameters, and then read data from GRASS database into R through read_RAST() and read_VECT(), do their analyses or modeling in R and potentially write results back into GRASS with write_RAST() and write_VECT(). See examples above.
through read_RAST() and read_VECT(), do their analyses or modeling in R and potentially write results back into GRASS with write_RAST() and write_VECT().


== R in GRASS in batch mode ==
== R in GRASS in batch mode ==
Line 472: Line 470:
<source lang="rsplus">
<source lang="rsplus">
library(rgrass)
library(rgrass)
# initialisation of GRASS in the North Carolina sample dataset (example with a compiled version)
library(terra)
initGRASS(gisBase = "/home/veroandreo/software/grass/dist.x86_64-pc-linux-gnu",  
# initialisation of GRASS in the North Carolina sample dataset
initGRASS(gisBase = "/usr/lib64/grass82",  
           home = tempdir(),  
           home = tempdir(),  
           gisDbase = "/home/veroandreo/grassdata/",
           gisDbase = "/home/veroandreo/grassdata/",
           location = "nc_spm_08_grass7", mapset = "user1", SG="elevation",
           location = "nc_spm_08_grass7",  
          mapset = "user1",
           override = TRUE)
           override = TRUE)
# set region to default
# set region to default
Line 483: Line 483:
gmeta()
gmeta()
# read data into R
# read data into R
ncdata <- read_RAST(c("geology_30m", "elevation"), cat=c(TRUE, FALSE))
ncdata <- read_RAST("geology_30m", cat=TRUE)
# summary of geology map
# summary of geology map
summary(ncdata$geology_30m)
summary(ncdata$geology_30m)
Line 495: Line 495:


<source lang="rsplus">
<source lang="rsplus">
    R version 4.0.2 (2020-06-22) -- "Taking Off Again"
R version 4.1.3 (2022-03-10) -- "One Push-Up"
    Copyright (C) 2020 The R Foundation for Statistical Computing
Copyright (C) 2022 The R Foundation for Statistical Computing
    Platform: x86_64-redhat-linux-gnu (64-bit)
Platform: x86_64-redhat-linux-gnu (64-bit)
    ...
 
    > library(rgrass)
> library(rgrass)
    Loading required package: XML
Loading required package: XML
    GRASS GIS interface loaded with GRASS version: (GRASS not running)
GRASS GIS interface loaded with GRASS version: (GRASS not running)
    > # initialisation and the use of north carolina dataset
> library(terra)
    > initGRASS(gisBase = "/home/veroandreo/software/grass/dist.x86_64-pc-linux-gnu", home = tempdir(),  
terra 1.7.23
    +          gisDbase = "/home/veroandreo/grassdata/",
 
    +          location = "nc_spm_08_grass7", mapset = "user1", SG="elevation",
> # initialisation of GRASS in the North Carolina sample dataset
    +          override = TRUE)
> initGRASS(gisBase = "/usr/lib64/grass82",  
    gisdbase    /home/veroandreo/grassdata/  
+          home = tempdir(),  
    location    nc_spm_08_grass7  
+          gisDbase = "/home/veroandreo/grassdata/",
    mapset      user1  
+          location = "nc_spm_08_grass7",  
    rows        13500
+          mapset = "user1",
    columns    15000
+          override = TRUE)
    north      228500
gisdbase    /home/veroandreo/grassdata/  
    south      215000
location    nc_spm_08_grass7  
    west        630000
mapset      user1  
    east        645000
rows        620
    nsres      1
columns    1630
    ewres      1
north      320000
    projection  +proj=lcc +lat_1=36.16666666666666 +lat_2=34.33333333333334
south      10000
     +lat_0=33.75 +lon_0=-79 +x_0=609601.22 +y_0=0 +no_defs +a=6378137
west        120000
    +rf=298.257222101 +towgs84=0.000,0.000,0.000 +type=crs +to_meter=1 
east        935000
   
nsres      500
    > system("g.region -dp")
ewres      500
    projection: 99 (Lambert Conformal Conic)
projection:
    zone:      0
  PROJCRS["NAD83(HARN) / North Carolina",
    datum:      nad83
     BASEGEOGCRS["NAD83(HARN)",
    ellipsoid:  a=6378137 es=0.006694380022900787
        DATUM["NAD83 (High Accuracy Reference Network)",
    north:      320000
            ELLIPSOID["GRS 1980",6378137,298.257222101,
    south:      10000
 
    west:      120000
> # set region to default
    east:      935000
> system("g.region -dp")
    nsres:      500
projection: 99 (Lambert Conformal Conic)
    ewres:      500
zone:      0
    rows:      620
datum:      nad83
    cols:      1630
ellipsoid:  a=6378137 es=0.006694380022900787
    cells:      1010600
north:      320000
    > gmeta()
south:      10000
    gisdbase    /home/veroandreo/grassdata/  
west:      120000
    location    nc_spm_08_grass7  
east:      935000
    mapset      user1  
nsres:      500
    rows        620  
ewres:      500
    columns    1630  
rows:      620
    north      320000  
cols:      1630
    south      10000  
cells:      1010600
     ...
 
     > ncdata <- read_RAST(c("geology_30m", "elevation"), cat=c(TRUE, FALSE))
> gmeta()
    ...
gisdbase    /home/veroandreo/grassdata/  
    > summary(ncdata$geology_30m)
location    nc_spm_08_grass7  
    CZfg_217 CZlg_262 CZig_270 CZbg_405 CZve_583 CZam_720 CZg_766 CZam_862
mapset      user1  
        292      78      277      102        8        1        2      25
rows        620  
    CZbg_910   Km_921 CZam_946    NA's  
columns    1630  
          18        5        2  1009790
north      320000  
    > proc.time()
south      10000  
      user  system elapsed  
west        120000
      8.061   2.016 10.048
east        935000
nsres      500
ewres      500
projection:
PROJCRS["NAD83(HARN) / North Carolina",
     BASEGEOGCRS["NAD83(HARN)",
        DATUM["NAD83 (High Accuracy Reference Network)",
            ELLIPSOID["GRS 1980",6378137,298.257222101,
                LENGTHUNIT["metre",1]]],
                ...       
                ...
        BBOX[33.83,-84.33,36.59,-75.38]],
     ID["EPSG",3358]]
...
> ncdata <- read_RAST("elev_state_500m")
...
r.out.gdal complete. File </home/veroandreo/tmp/RtmpoA1IKV/file2844e28321574.grd> created.
 
> summary(ncdata)
  file2844e28321574
Min.  :  -6.47 
1st Qu.:  14.36 
Median :  86.55 
Mean  : 214.55 
3rd Qu.: 252.66 
Max.   :1878.39 
NA's   :46188   
 
> proc.time()
  user  system elapsed  
15.574   1.275 16.998
</source>
</source>



Revision as of 19:39, 21 April 2023

Installation

See R_statistics/Installation

Terminology

See "Overview" in R_statistics

R within GRASS

In this example, we will use R within a GRASS GIS session, i.e. start R (or RStudio) from the GRASS GIS terminal or command line interface.

Startup

  • First start a GRASS GIS session. Then, at the GRASS command line start R (for an 'rstudio' session, see below)
In this example we will use the North Carolina sample dataset.

Reset the region settings to the defaults

GRASS (nc_spm_08_grass7):~ > g.region -d

Launch R from the GRASS prompt

GRASS (nc_spm_08_grass7):~ > R

Load the rgrass library:

library(rgrass)

Get the GRASS environment (mapset, region, map projection, etc.); you can display the metadata for your location by printing G:

gmeta()
gisdbase    /home/mneteler/grassdata 
location    nc_spm_08_grass7 
mapset      user1 
rows        620 
columns     1630 
north       320000 
south       10000 
west        120000 
east        935000 
nsres       500 
ewres       500 
projection:
 PROJCRS["NAD83(HARN) / North Carolina",
    BASEGEOGCRS["NAD83(HARN)",
        DATUM["NAD83 (High Accuracy Reference Network)",
            ELLIPSOID["GRS 1980",6378137,298.257222101,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4152]],
    CONVERSION["SPCS83 North Carolina zone (meters)",
        METHOD["Lambert Conic Conformal (2SP)",
            ID["EPSG",9802]],
        PARAMETER["Latitude of false origin",33.75,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8821]],
        PARAMETER["Longitude of false origin",-79,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8822]],
        PARAMETER["Latitude of 1st standard parallel",36.1666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8823]],
        PARAMETER["Latitude of 2nd standard parallel",34.3333333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8824]],
        PARAMETER["Easting at false origin",609601.22,
            LENGTHUNIT["metre",1],
            ID["EPSG",8826]],
        PARAMETER["Northing at false origin",0,
            LENGTHUNIT["metre",1],
            ID["EPSG",8827]]],
    CS[Cartesian,2],
        AXIS["easting (X)",east,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["northing (Y)",north,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Engineering survey, topographic mapping."],
        AREA["United States (USA) - North Carolina - counties of Alamance; Alexander; Alleghany; Anson; Ashe; Avery; Beaufort; Bertie; Bladen; Brunswick; Buncombe; Burke; Cabarrus; Caldwell; Camden; Carteret; Caswell; Catawba; Chatham; Cherokee; Chowan; Clay; Cleveland; Columbus; Craven; Cumberland; Currituck; Dare; Davidson; Davie; Duplin; Durham; Edgecombe; Forsyth; Franklin; Gaston; Gates; Graham; Granville; Greene; Guilford; Halifax; Harnett; Haywood; Henderson; Hertford; Hoke; Hyde; Iredell; Jackson; Johnston; Jones; Lee; Lenoir; Lincoln; Macon; Madison; Martin; McDowell; Mecklenburg; Mitchell; Montgomery; Moore; Nash; New Hanover; Northampton; Onslow; Orange; Pamlico; Pasquotank; Pender; Perquimans; Person; Pitt; Polk; Randolph; Richmond; Robeson; Rockingham; Rowan; Rutherford; Sampson; Scotland; Stanly; Stokes; Surry; Swain; Transylvania; Tyrrell; Union; Vance; Wake; Warren; Washington; Watauga; Wayne; Wilkes; Wilson; Yadkin; Yancey."],
        BBOX[33.83,-84.33,36.59,-75.38]],
    ID["EPSG",3358]]

Listing of existing maps

List available vector maps:

execGRASS("g.list", parameters = list(type = "vector"))

List selected vector maps (wildcard):

execGRASS("g.list", parameters = list(type = "vector", pattern = "precip*"))
 precip
 precip_30ynormals
 precip_30ynormals_3d

Save selected vector maps into R vector:

my_vmaps <- execGRASS("g.list", parameters = list(type = "vector", pattern = "precip*"))
attributes(my_vmaps)
attributes(my_vmaps)$resOut
 [1] "precip"               "precip_30ynormals"    "precip_30ynormals_3d"

List available raster maps:

execGRASS("g.list", parameters = list(type = "raster"))

List selected raster maps (wildcard):

execGRASS("g.list", parameters = list(type = "raster", pattern = "lsat7_2002*"))
 lsat7_2002_10
 lsat7_2002_20
 lsat7_2002_30
 lsat7_2002_40
 lsat7_2002_50
 lsat7_2002_61
 lsat7_2002_62
 lsat7_2002_70
 lsat7_2002_80

Reading data from GRASS

Example 1: raster maps

Manual page: read_RAST()

Read two GRASS raster maps, "geology_30m" and "elevation", from the North Carolina sample data location into the R current session as a new object "ncdata". This object is a SpatRaster layer from terra package:

ncdata <- read_RAST(c("geology_30m", "elevation"))

We can verify the new R object:

ncdata
class       : SpatRaster 
dimensions  : 450, 500, 2  (nrow, ncol, nlyr)
resolution  : 30, 30  (x, y)
extent      : 630000, 645000, 215000, 228500  (xmin, xmax, ymin, ymax)
coord. ref. : +proj=lcc +lat_0=33.75 +lon_0=-79 +lat_1=36.1666666666667 +lat_2=34.3333333333333 +x_0=609601.22 +y_0=0 +ellps=GRS80 +units=m +no_defs 
sources     : file1da12a752d65.grd  
              file1da12112d9ea4.grd  
names       : geology_30m, elevation 
min values  :         217,  55.92321 
max values  :         948, 156.25197

Now, let's plot one of the raster layers within the SpatRaster object. We'll load terra library to have all functionality available:

library(terra)
plot(ncdata$elevation, main="North Carolina elevation")

In addition, we can show what is going on inside the objects read into R:

summary(ncdata)
  geology_30m      elevation     
 Min.   :217.0   Min.   : 56.01  
 1st Qu.:217.0   1st Qu.: 94.77  
 Median :270.0   Median :108.86  
 Mean   :311.2   Mean   :110.36  
 3rd Qu.:270.0   3rd Qu.:126.80  
 Max.   :948.0   Max.   :156.07

Example 2: single raster map

Here an example to transfer a single raster map from GRASS GIS to R:

library(rgrass)
library(terra)
execGRASS("g.region", raster = "elevation", flags = "p")
ncdata <- read_RAST("elevation")
summary(ncdata)
plot(ncdata)

Example 3: vector maps

Here an example to transfer a single vector map from GRASS GIS to R. In this case, vector maps from GRASS will be converted into SpatVector objects from the terra package in R:

# needed prerequisite
library(rgrass)
library(terra)
execGRASS("v.info", map="schools_wake", layer="1")
vInfo("schools_wake")
myschools <- read_VECT("schools_wake")
print(summary(myschools))
plot(myschools)

Example 4: Summarizing data

We can create a table of cell counts:

freq(ncdata$geology_30m)
   layer value count
1      1   217 80618
2      1   262 22076
3      1   270 76597
4      1   405 28190
5      1   583  2401
6      1   720   536
7      1   766   786
8      1   862  6858
9      1   910  4996
10     1   921  1392
11     1   945     1
12     1   946   452
13     1   948    97

And compare with the equivalent GRASS module:

execGRASS("r.stats", flags=c("c", "l"), parameters=list(input="geology_30m"), ignore.stderr=TRUE)
217 CZfg 80618
262 CZlg 22076
270 CZig 76597
405 CZbg 28190
583 CZve 2401
720 CZam 536
766 CZg 786
862 CZam 6858
910 CZbg 4996
921 Km 1392
945 CZbg 1
946 CZam 452
948 CZam 97


Example 5: Querying maps

Sometimes you may want to query GRASS GIS maps from your R session. As an example, here the transfer of raster pixel values at the position of vector points:

# set the computational region to the raster map:
execGRASS("g.region", raster = "elev_state_500m", flags = "p")

# query raster map at vector points, transfer result into R
goutput <- execGRASS("r.what", map="elev_state_500m", points="geodetic_pts", separator=",", intern=TRUE)
str(goutput)
chr [1:29939] "571530.81289275,265739.968425953,,187.8082200648" ...

# parse it
con <- textConnection(goutput)
go1 <- read.csv(con, header=FALSE)
str(go1)
'data.frame':	29939 obs. of  4 variables:
 $ V1: num  571531 571359 571976 572391 573011 ...
 $ V2: num  265740 265987 267049 267513 269615 ...
 $ V3: logi  NA NA NA NA NA NA ...
 $ V4: Factor w/ 22738 levels "-0.0048115728",..: 6859 6642 6749 6411 6356 6904 7506 7224 6908 7167 ...
summary(go1)
       V1               V2            V3                V4       
 Min.   :121862   Min.   :  7991   Mode:logical   0      :  723  
 1st Qu.:462706   1st Qu.:162508   NA's:29939     *      :  293  
 Median :610328   Median :204502                  0.3048 :   47  
 Mean   :588514   Mean   :200038                  0.6096 :   44  
 3rd Qu.:717610   3rd Qu.:247633                  1.524  :   42  
 Max.   :946743   Max.   :327186                  0.9144 :   23  
                                                  (Other):28767

Exporting data back to GRASS

Finally, a SpatialGridDataFrame object is written back to a GRASS raster map:

First prepare some data: (square root of elevation)

ncdata$sqdem <- sqrt(ncdata$elevation)

Export data from R back into a GRASS raster map:

write_RAST(ncdata$sqdem, "sqdemNC", flags = c("o","overwrite"))

Check that it imported properly:

execGRASS("r.info", parameters=list(map="sqdemNC"))
 +----------------------------------------------------------------------------+
 | Map:      sqdemNC                        Date: Fri Apr 21 17:14:05 2023    |
 | Mapset:   PERMANENT                      Login of Creator: veroandreo      |
 | Location: nc_spm_08_grass7                                                 |
 | DataBase: /home/veroandreo/grassdata                                       |
 | Title:                                                                     |
 | Timestamp: none                                                            |
 |----------------------------------------------------------------------------|
 |                                                                            |
 |   Type of Map:  raster               Number of Categories: 0               |
 |   Data Type:    FCELL                Semantic label: (none)                |
 |   Rows:         450                                                        |
 |   Columns:      500                                                        |
 |   Total Cells:  225000                                                     |
 |        Projection: Lambert Conformal Conic                                 |
 |            N:     228500    S:     215000   Res:    30                     |
 |            E:     645000    W:     630000   Res:    30                     |
 |   Range of data:    min = 7.478182  max = 12.50008                         |
 |                                                                            |
 |   Data Description:                                                        |
 |    generated by r.in.gdal                                                  |
 |                                                                            |
 |   Comments:                                                                |
 |    r.in.gdal --overwrite -o input="/home/veroandreo/tmp/grass8-veroandr\   |
 |    eo-120898/RtmpPcRHkF/file1da12dbc5b5d.grd" output="sqdemNC" memory=3\   |
 |    00 offset=0 num_digits=0                                                |
 |                                                                            |
 +----------------------------------------------------------------------------+

Using RStudio in a GRASS GIS session

If you are most used to run R through RStudio, but still want to have all GRASS data available for performing any analyses without loosing the possibility of still using GRASS command line, you can run:

GRASS> rstudio &

or, if you already are working on a certain RStudio project:

GRASS> rstudio /path/to/project/folder/ &

Then, you load rgrass library in your RStudio project

library(rgrass)

and you are ready to go.

RStudio used in GRASS GIS session

GRASS within R

In this case, we start GRASS GIS within an R session, i.e., we use initGRASS() to start GRASS in a temporary location or in an existing GRASS GIS location.

The first argument in initGRASS() is gisBase=. This argument refers to the path where GRASS is installed. In the latest rgrass version, if the gisBase argument is missing, initGRASS() will do a minimal effort of guessing it. Firstly, if a GRASS_INSTALLATION environment variable is availabe, then its value will automatically be used for gisBase. If not, then the system command grass --config path</> will be tried to get the value of GISBASE that corresponds to the GRASS installation in the system PATH (if any).

If users, still want/need to pass the path to GRASS installation themselves, they can run:

# OSGeo4W shell, Linux, Mac OSX users:
grass --config path

It may report something like:

# OSGeo4W users:
C:\OSGeo4W64\apps\grass\grass

# Linux, Mac OSX users:
/usr/local/grass

If GRASS GIS was installed through OSGeo4W, users should first start the OSGeo4W Shell. Note that it may start in C: or a directory where the user does not have writing permission. Before calling R or RStudio, first change to a directory where you are sure you have writing permission.

## MS-Windows users (example for an OSGeo4W 64bit installation)
# change to a directory with writing permission
C:\>d:
D:\>cd temp
D:\temp>cd testR

# start R within this directory:
D:\temp\testR>R

# to start RStudio from OSGeo4W Shell, run: "C:/Program Files/RStudio/bin/rstudio.exe"
 
# load rgrass package
library(rgrass)

# initialisation of GRASS in the North Carolina sample dataset
initGRASS(gisBase = "C:/OSGeo4W64/apps/grass/grass",
         gisDbase = "C:/Users/marissa/grassdata/",
         location = "nc_spm_08_grass7", 
         mapset = "user1",
         home=tempdir(),
         override = TRUE)

Linux and Mac OSX users just need to start R or RStudio the usual way, load the rgrass package and initialize GRASS as shown below:

library(rgrass)

# initialisation of GRASS in the North Carolina sample dataset
initGRASS(gisBase = "/usr/lib64/grass82",
          gisDbase = "/home/veroandreo/grassdata/",
          location = "nc_basic_spm_grass7",
          mapset = "user1",
          home=tempdir(),
          override = TRUE)


Temporary location

If we don’t pass an existing location to initGRASS(), a temporary GRASS location will be created and set. By default this will be an XY location, i.e., no CRS defined. To define a CRS for the temporary location, we create a terra SpatRaster object that by default will be EPSG:4326.

library(terra)
x <- rast()
x
class       : SpatRaster 
dimensions  : 180, 360, 1  (nrow, ncol, nlyr)
resolution  : 1, 1  (x, y)
extent      : -180, 180, -90, 90  (xmin, xmax, ymin, ymax)
coord. ref. : lon/lat WGS 84

Then, we use that object to provide an EPSG to our temporary location via the SG= parameter and we start GRASS:

initGRASS(home = tempdir(), 
          SG = x, 
          override = TRUE)

After that, users can write their raster and vector maps into GRASS with write_RAST() and write_VECT(), use GRASS GIS modules over those data with execGRASS() and export the results back to R with read_RAST() and read_VECT() as exemplified above.

Existing location

In the case of existing locations and mapsets, users will provide the path to them via the location= and mapset= parameters, and then read data from GRASS database into R through read_RAST() and read_VECT(), do their analyses or modeling in R and potentially write results back into GRASS with write_RAST() and write_VECT(). See examples above.

R in GRASS in batch mode

Run the following script with

R CMD BATCH batch.R
library(rgrass)
library(terra)
# initialisation of GRASS in the North Carolina sample dataset
initGRASS(gisBase = "/usr/lib64/grass82", 
          home = tempdir(), 
          gisDbase = "/home/veroandreo/grassdata/",
          location = "nc_spm_08_grass7", 
          mapset = "user1",
          override = TRUE)
# set region to default
system("g.region -dp")
# verify
gmeta()
# read data into R
ncdata <- read_RAST("geology_30m", cat=TRUE)
# summary of geology map
summary(ncdata$geology_30m)
proc.time()

The result is (shorted here):

cat batch.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-redhat-linux-gnu (64-bit)

> library(rgrass)
Loading required package: XML
GRASS GIS interface loaded with GRASS version: (GRASS not running)
> library(terra)
terra 1.7.23

> # initialisation of GRASS in the North Carolina sample dataset
> initGRASS(gisBase = "/usr/lib64/grass82", 
+           home = tempdir(), 
+           gisDbase = "/home/veroandreo/grassdata/",
+           location = "nc_spm_08_grass7", 
+           mapset = "user1",
+           override = TRUE)
gisdbase    /home/veroandreo/grassdata/ 
location    nc_spm_08_grass7 
mapset      user1 
rows        620 
columns     1630 
north       320000 
south       10000 
west        120000 
east        935000 
nsres       500 
ewres       500 
projection:
 PROJCRS["NAD83(HARN) / North Carolina",
    BASEGEOGCRS["NAD83(HARN)",
        DATUM["NAD83 (High Accuracy Reference Network)",
            ELLIPSOID["GRS 1980",6378137,298.257222101,

> # set region to default
> system("g.region -dp")
projection: 99 (Lambert Conformal Conic)
zone:       0
datum:      nad83
ellipsoid:  a=6378137 es=0.006694380022900787
north:      320000
south:      10000
west:       120000
east:       935000
nsres:      500
ewres:      500
rows:       620
cols:       1630
cells:      1010600

> gmeta()
gisdbase    /home/veroandreo/grassdata/ 
location    nc_spm_08_grass7 
mapset      user1 
rows        620 
columns     1630 
north       320000 
south       10000 
west        120000 
east        935000 
nsres       500 
ewres       500 
projection:
 PROJCRS["NAD83(HARN) / North Carolina",
    BASEGEOGCRS["NAD83(HARN)",
        DATUM["NAD83 (High Accuracy Reference Network)",
            ELLIPSOID["GRS 1980",6378137,298.257222101,
                LENGTHUNIT["metre",1]]],
                ...        
                ...
        BBOX[33.83,-84.33,36.59,-75.38]],
    ID["EPSG",3358]] 
...
> ncdata <- read_RAST("elev_state_500m")
...
r.out.gdal complete. File </home/veroandreo/tmp/RtmpoA1IKV/file2844e28321574.grd> created.

> summary(ncdata)
 file2844e28321574
 Min.   :  -6.47  
 1st Qu.:  14.36  
 Median :  86.55  
 Mean   : 214.55  
 3rd Qu.: 252.66  
 Max.   :1878.39  
 NA's   :46188    

> proc.time()
   user  system elapsed 
 15.574   1.275  16.998

Troubleshooting

Running out of disk space

Linux: A common issue is that /tmp/ is used for temporary files albeit being often a small partition. To change that to a larger directory, you may add to your $HOME/.bashrc the entry:

# change TMP directory of R (note: of course also another directory than suggested here is fine)
mkdir -p $HOME/tmp
export TMP=$HOME/tmp

The drawback of this approach is that on modern Linux systems the /tmp/ is a fast RAM disk (based on tempfs) while HOME directories are often on slower spinning disks (unless you have a SSD drive). At least you no longer run out of disk space easily.