Vector network analysis/pl: Difference between revisions
Jump to navigation
Jump to search
m (→Nowe pomysły: translated to pl) |
m (pl translation) |
||
Line 3: | Line 3: | ||
GRASS provides support for vector network analysis using the [http://trac.osgeo.org/grass/browser/grass/trunk/lib/vector/dglib/ DGlib] Directed Graph Library. | GRASS provides support for vector network analysis using the [http://trac.osgeo.org/grass/browser/grass/trunk/lib/vector/dglib/ DGlib] Directed Graph Library. | ||
== | == Zaimplementowane algorytmy == | ||
Poniższe algorytmy są zaimplementowane (w GRASS 6.5+): | |||
* Utrzymanie sieci: {{cmd|v.net|version=70}} | * Utrzymanie sieci: {{cmd|v.net|version=70}} | ||
* Najkrótsza droga: {{cmd|d.path|version=64}} and {{cmd|v.net.path|version=70}} | * Najkrótsza droga: {{cmd|d.path|version=64}} and {{cmd|v.net.path|version=70}} | ||
* Najkrótsza droga pomiędzy wieloma parami punktów {{cmd|v.net.allpairs|version=70}} | * Najkrótsza droga pomiędzy wieloma parami punktów {{cmd|v.net.allpairs|version=70}} | ||
* Allocation of sources ( | * Allocation of sources (tworzenie podsieci, np. police station zones): {{cmd|v.net.alloc|version=70}} | ||
* | * Jednakowe odległości (ze środków): {{cmd|v.net.iso|version=70}} | ||
* Computes bridges and articulation points: {{cmd|v.net.bridge|version=70}} | * Computes bridges and articulation points: {{cmd|v.net.bridge|version=70}} | ||
* Computes degree, centrality, betweeness, closeness and eigenvector centrality measures: {{cmd|v.net.centrality|version=70}} | * Computes degree, centrality, betweeness, closeness and eigenvector centrality measures: {{cmd|v.net.centrality|version=70}} | ||
Line 29: | Line 29: | ||
== Example: Shortest path routing == | == Example: Shortest path routing == | ||
* | * zobacz strony opisujące {{cmd|v.net.path}} i {{cmd|d.path}} | ||
== Nowe pomysły == | == Nowe pomysły == |
Revision as of 11:33, 10 September 2012
Vector network analysis
GRASS provides support for vector network analysis using the DGlib Directed Graph Library.
Zaimplementowane algorytmy
Poniższe algorytmy są zaimplementowane (w GRASS 6.5+):
- Utrzymanie sieci: v.net
- Najkrótsza droga: d.path and v.net.path
- Najkrótsza droga pomiędzy wieloma parami punktów v.net.allpairs
- Allocation of sources (tworzenie podsieci, np. police station zones): v.net.alloc
- Jednakowe odległości (ze środków): v.net.iso
- Computes bridges and articulation points: v.net.bridge
- Computes degree, centrality, betweeness, closeness and eigenvector centrality measures: v.net.centrality
- Computes strongly and weakly connected components: v.net.components
- Computes vertex connectivity between two sets of nodes: v.net.connectivity
- Computes shortest distance via the network between the given sets of features: v.net.distance
- Computes the maximum flow between two sets of nodes: v.net.flow
- Computes minimum spanning tree: v.net.spanningtree
- Minimum Steiner trees (star-like connections, e.g. broadband cable connections): v.net.steiner
- Znajdowanie najkrótszej drogi z użyciem rozkładów jazdy: v.net.timetable
- Traveling salesman (round trip): v.net.salesman
Vector directions are defined by the digitizing direction (a-->--b). You can navigate either omnidirectionally or differently in each directions as both directions are supported. Network modules provide parameters to assign attribute columns to the forward and backward direction. To see how a vector is directed, use the "display" parameter of d.vect (set display=dir).
- see the vectorintro "vector map processing and network analysis" help page
Example: Shortest path routing
- zobacz strony opisujące v.net.path i d.path
Nowe pomysły
- Vector network analysis ideas (pomóż w realizacji)
Zrzuty ekranu
- more screenshots from the GRASS website
See also
- GSoC Network Analysis: many new modules!