Hydrological Sciences: Difference between revisions

From GRASS-Wiki
Jump to navigation Jump to search
(removed broken link)
mNo edit summary
Line 79: Line 79:
* Metz, M. et al 2010: Accurate stream extraction from large, radar-based elevation models ([http://www.hydrol-earth-syst-sci-discuss.net/7/3213/2010/hessd-7-3213-2010.pdf PDF])
* Metz, M. et al 2010: Accurate stream extraction from large, radar-based elevation models ([http://www.hydrol-earth-syst-sci-discuss.net/7/3213/2010/hessd-7-3213-2010.pdf PDF])
* J Jasiewicz, M Metz, 2011: A new GRASS GIS toolkit for Hortonian analysis of drainage networks, Computers & Geosciences. [http://dx.doi.org/10.1016/j.cageo.2011.03.003 DOI]
* J Jasiewicz, M Metz, 2011: A new GRASS GIS toolkit for Hortonian analysis of drainage networks, Computers & Geosciences. [http://dx.doi.org/10.1016/j.cageo.2011.03.003 DOI]
* Di Leo M., Di Stefano M., Claps P., Sole A. Caratterizzazione morfometrica del bacino idrografico in GRASS GIS (Morphometric characterization of the catchment in GRASS GIS environment), Geomatics Workbooks n.9, 2010. ([http://geomatica.como.polimi.it/workbooks/n9/GW9-FOSS4Git_2010.pdf PDF]).  
* Di Leo M., Di Stefano M., Claps P., Sole A. Caratterizzazione morfometrica del bacino idrografico in GRASS GIS, Geomatics Workbooks n.9, 2010 (89-100). ([http://geomatica.como.polimi.it/workbooks/n9/GW9-FOSS4Git_2010.pdf PDF]). (In Italian)
* Di Leo M., Manfreda S., Fiorentino M., An automated procedure for the detection of flood prone areas: r.hazard.flood, Geomatics Workbooks n.10, 2011. ([http://geomatica.como.polimi.it/workbooks/n10/GW10-FOSS4Git_2011.pdf PDF]).
* Di Leo M., Manfreda S., Fiorentino M., An automated procedure for the detection of flood prone areas: r.hazard.flood, Geomatics Workbooks n.10, 2011 (83-89). ([http://geomatica.como.polimi.it/workbooks/n10/GW10-FOSS4Git_2011.pdf PDF]).
* Manfreda S., Di Leo M., Sole A., Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, (10.1061/(ASCE)HE.1943-5584.0000367), 2011.  
* Manfreda S., Di Leo M., Sole A., Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, (10.1061/(ASCE)HE.1943-5584.0000367), 2011.  



Revision as of 16:39, 21 June 2014

Tutorials

Flow calculation

  • r.carve: Takes vector stream data, transforms it to raster and subtracts depth from the output DEM.
  • r.drain: Traces a flow through an elevation model on a raster map.
  • r.fillnulls: Fills no-data areas in raster maps using v.surf.rst splines interpolation
  • r.fill.dir: Filters and generates a depressionless elevation map and a flow direction map from a given elevation layer.
  • r.flow: Construction of slope curves (flowlines), flowpath lengths, and flowline densities (upslope areas) from a raster digital elevation model (DEM)
  • r.topidx: Creates topographic index [ln(a/tan(beta))] map from elevation map (topographic wetness index).
  • r.terraflow: Flow computation for massive grids.
  • v.breach: Creates vector maps of lines and points of continuously lowering elevation down the input watercourses, based on the input raster DEM.
  • r.traveltime: Computes the travel time of surface runoff to an outlet.

Groundwater flow

  • r.gwflow: Numerical calculation program for transient, confined and unconfined groundwater flow in two dimensions.
  • r3.gwflow: Numerical calculation program for transient, confined groundwater flow in three dimensions. See also Voxel.

Hydrological models

  • r.topmodel: Simulates TOPMODEL which is a physically based hydrological model.
  • HydroFOSS: A distributed, physically based hydrological model.
  • SWAT: a river basin scale model developed to quantify the impact of land management practices in large, complex watersheds.
  • r.water.fea is an interactive program that allows the user to simulate storm water runoff analysis using the finite element numerical technique. Infiltration is calculated using the Green and Ampt formulation. r.water.fea computes and draws hydrographs for every basin as well as at stream junctions in an analysis area. It also draws animation maps at the basin level. The software is available within GRASS 4.x/5.x.
  • GIPE: The GRASS Image Processing Environment (GIPE) has USLE, Energy-balance and radiance-reflectance correction models. (r.hydro.CASC2D - a physically-based, distributed, raster hydrological model which simulates the hydrological response of a watershed subject to a given rainfall field - is temporarily here waiting to return to main GRASS)

Sediment modules

  • r.sim.sediment: Sediment transport and erosion/deposition simulation using path sampling method (SIMWE)

Stream modules

For an overview, see R.stream.*.

  • r.stream.angle: Route azimuth, direction and relation to streams of higher order.
  • r.stream.basins: Calculate basins according user input.
  • r.stream.del: Calculates downslope length of first order streams and delete them if it length (in pixels) is lower than the treeshold.
  • r.stream.distance: Calculate distance to and elevation above streams and outlets according user input. It can work in stream mode where target are streams and outlets mode where targets are outlets.
  • r.stream.extract: Stream network extraction. It produces a vector network with the direction of the vector lines corresponding to the flow direction.
  • r.stream.order: Calculate Strahler's and Horton's stream order Hack's main streams and Shreeve's stream magnitude. It uses r.watershed or r.stream.extract output files: stream, direction and optionally accumulation. Output data can be either from r.watershed or r.stream.extract but not from both together.
  • r.stream.pos: Route azimuth, direction and relation to streams of higher order.
  • r.stream.stats: Calculate Horton's and optionally Hack's statistics according to user input.
  • r.stream.preview: In order to find a value of upslope area to be used as input to extract the river network using r.stream.extract or r.watershed, it is common to proceed by tentatives. r.preview is useful for quickly display results for various tentatives of threshold values.

Only available for GRASS 7:

  • r.stream.channel: Calculate some local properties of the stream network. It is supplementary module for r.stream.order and r.stream.distance to investigate channel subsystem.
  • r.stream.segment: The module is designed to inverstigate network lineaments and calculate angle relations between tributaries and its major streams.
  • r.stream.slope: Calculates the difference between elevation of current cell and downstream cell, gradient and max curvature on the basis of a flow direction map. It can be used to calculate the directional slope using a flow direction map.
  • r.stream.snap: is a supplementary module for r.stream.extract and r.stream.basins to correct position of outlets or stream initial points as they do not lie on the streamlines.

Watershed modules

  • r.basin.fill: Generates a raster map layer showing watershed subbasins.
  • r.water.outlet: Generates a watershed basin from a drainage direction map (from r.watershed) and a set of coordinates representing the outlet point of watershed.
  • r.watershed: Watershed basin analysis program.
  • r.lake: Fills a lake to a target water level from a given start point.
  • r.basin: Generates the main morphometric parameters of the basin. Here a tutorial
  • r.threshold: Finds a first tentative value of upslope area to be used as input to extract the river network using r.stream.extract or r.watershed.
  • r.hydrodem: Applies hydrological conditioning (sink removal) to a required input elevation map.


Flow accumulation with Multiple Flow Directions (usingr.watershed, North Carolina sample dataset)

Flooding areas

  • r.sim.water: Overland flow hydrologic simulation using path sampling method (SIMWE)
  • r.inund.fluv: Allows to obtain a fluvial potentially inundation map given a high-resolution DTM of the area surrounding the river and a water surface profile calculated through an 1-D hydrodinamic model.
  • r.hazard.flood: Is an implementation of a fast procedure to detect flood prone areas. It may help in the delineation of flood prone areas especially in basins with marked topography. The use of the modified topographic index should not be considered as an alternative to standard hydrological-hydraulic simulations for flood mapping, but may represent a tool for a preliminary delineation of flooding areas.

References

  • Metz, M. et al 2009: Fast Stream Extraction from Large, Radar-Based Elevation Models with Variable Level of Detail (PDF)
  • Metz, M. et al 2010: Accurate stream extraction from large, radar-based elevation models (PDF)
  • J Jasiewicz, M Metz, 2011: A new GRASS GIS toolkit for Hortonian analysis of drainage networks, Computers & Geosciences. DOI
  • Di Leo M., Di Stefano M., Claps P., Sole A. Caratterizzazione morfometrica del bacino idrografico in GRASS GIS, Geomatics Workbooks n.9, 2010 (89-100). (PDF). (In Italian)
  • Di Leo M., Manfreda S., Fiorentino M., An automated procedure for the detection of flood prone areas: r.hazard.flood, Geomatics Workbooks n.10, 2011 (83-89). (PDF).
  • Manfreda S., Di Leo M., Sole A., Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, (10.1061/(ASCE)HE.1943-5584.0000367), 2011.